skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Holguin, Kathryn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Developing high-capacity, stable, and sustainable K-ion batteries (KIBs) is an ongoing challenge due to the lack of high-performance and environmentally benign electrode materials. To address this challenge, organic electrode materials that are affordable, abundant, highly sustainable, highly tunable and flexible offer opportunities. Herein, we report a novel N-containing carboxylate salt, K 2 C 12 H 6 N 2 O 4 (K-DCA), with two bipyridine moieties and two carboxylate groups. The carboxylate- and pyridine-based active centers in K-DCA can reversibly react with four K-ions to provide a specific capacity of 163.3 mA h g −1 with a pair of redox plateaus centered at ∼0.8 V. When coupling with nitrogen-doped reduced graphene oxide (NrGO), the composite anode material, K-DCA-NrGO, demonstrates a high specific capacity of 225.25 mA h g −1 and increased capacity retention during long-term cycling. Additionally, the reaction kinetics and mechanism studies demonstrate that the composite exhibits low overpotentials, low interphase resistance, a partial pseudo-capacitance behavior, and stable chemical/morphological structures upon cycling, which contribute to the fast kinetics and long cycle life. 
    more » « less
  2. null (Ed.)
    A conjugated tetracarboxylate, 1,2,4,5-benzenetetracarboxylate sodium salt (Na 4 C 10 H 2 O 8 ), was designed and synthesized as an anode material in Na-ion batteries (NIBs). This organic compound shows low redox potentials (∼0.65 V), long cycle life (1000 cycles), and fast charging capability (up to 2 A g −1 ), demonstrating a promising organic anode for stable and sustainable NIBs. 
    more » « less
  3. null (Ed.)
    Na-ion batteries (NIBs) are promising alternatives to Li-ion batteries (LIBs) due to the low cost, abundance, and high sustainability of sodium resources. However, the high performance of inorganic electrode materials in LIBs does not extend to NIBs because of the larger ion size of Na + than Li + and more complicated electrochemistry. Therefore, it is vital to search for high-performance electrode materials for NIBs. Organic electrode materials (OEMs) with the advantages of high structural tunability and abundant structural diversity show great promise in developing high-performance NIBs. To achieve advanced OEMs for NIBs, a fundamental understanding of the structure–performance correlation is desired for rational structure design and performance optimization. In this review, recent advances in developing OEMs for non-aqueous, aqueous, and all-solid-state NIBs are presented. The challenges, advantages, mechanisms, development, and applications of advanced OEMs in NIBs are also discussed. Perspectives for the innovation of structure design principle and future research direction of OEMs in non-aqueous, aqueous, and all-solid-state NIBs are provided. 
    more » « less
  4. null (Ed.)
    Due to the low cost and abundance of multivalent metallic resources (Mg/Al/Zn/Ca), multivalent rechargeable batteries (MRBs) are promising alternatives to Li-ion and Pb-acid batteries for grid-scale stationary energy storage applications. However, the high performance of inorganic electrode materials in Li-ion batteries does not extend to MRBs, because the high charge density of multivalent cations dramatically reduces their diffusivity in the crystal lattice of inorganic materials. To achieve high-performance MRBs, organic electrode materials (OEMs) with abundant structural diversity and high structural tunability offer opportunities. This review presents an overview of the state-of-the-art OEMs in MRBs, including non-aqueous rechargeable Mg/Al/Zn and aqueous rechargeable Mg/Al/Zn/Ca batteries. The advantages, challenges, development, mechanism, structure, and performance of OEMs in MRBs are discussed in detail. To provide a comprehensive and thorough understanding of OEMs in MRBs, the correlation between molecular structure and electrochemical behavior is also summarized and discussed. This review offers insights for the rational structure design and performance optimization of advanced OEMs in MRBs. 
    more » « less
  5. Abstract Developing fast‐charging, high‐temperature, and sustainable batteries is critical for the large‐scale deployment of energy storage devices in electric vehicles, grid‐scale electrical energy storage, and high temperature regions. Here, a transition metal‐free all‐organic rechargeable potassium battery (RPB) based on abundant and sustainable organic electrode materials (OEMs) and potassium resources for fast‐charging and high‐temperature applications is demonstrated. N‐doped graphene and a 2.8 m potassium hexafluorophosphate (KPF6) in diethylene glycol dimethyl ether (DEGDME) electrolyte are employed to mitigate the dissolution of OEMs, enhance the electrode conductivity, accommodate large volume change, and form stable solid electrolyte interphase in the all‐organic RPB. At room temperature, the RPB delivers a high specific capacity of 188.1 mAh g−1at 50 mA g−1and superior cycle life of 6000 and 50000 cycles at 1 and 5 A g−1, respectively, demonstrating an ultra‐stable and fast‐charging all‐organic battery. The impressive performance at room temperature is extended to high temperatures, where the high‐mass‐loading (6.5 mg cm−2) all‐organic RPB exhibits high‐rate capability up to 2 A g−1and a long lifetime of 500 cycles at 70–100 °C, demonstrating a superb fast‐charging and high‐temperature battery. The cell configuration demonstrated in this work shows great promise for practical applications of sustainable batteries at extreme conditions. 
    more » « less